首页    期刊浏览 2025年07月03日 星期四
登录注册

文章基本信息

  • 标题:Don’t Stop Me Now! Using Global Dynamic Oracles to Correct Training Biases of Transition-Based Dependency Parsers
  • 本地全文:下载
  • 作者:Lauriane Aufrant ; Guillaume Wisniewski ; François Yvon
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:318-323
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:This paper formalizes a sound extension of dynamic oracles to global training, in the frame of transition-based dependency parsers. By dispensing with the pre-computation of references, this extension widens the training strategies that can be entertained for such parsers; we show this by revisiting two standard training procedures, early-update and max-violation, to correct some of their search space sampling biases. Experimentally, on the SPMRL treebanks, this improvement increases the similarity between the train and test distributions and yields performance improvements up to 0.7 UAS, without any computation overhead.
国家哲学社会科学文献中心版权所有