首页    期刊浏览 2025年06月15日 星期日
登录注册

文章基本信息

  • 标题:Continuous Learning in Neural Machine Translation using Bilingual Dictionaries
  • 本地全文:下载
  • 作者:Jan Niehues
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:830-840
  • DOI:10.18653/v1/2021.eacl-main.70
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:While recent advances in deep learning led to significant improvements in machine translation, neural machine translation is often still not able to continuously adapt to the environment. For humans, as well as for machine translation, bilingual dictionaries are a promising knowledge source to continuously integrate new knowledge. However, their exploitation poses several challenges: The system needs to be able to perform one-shot learning as well as model the morphology of source and target language. In this work, we proposed an evaluation framework to assess the ability of neural machine translation to continuously learn new phrases. We integrate one-shot learning methods for neural machine translation with different word representations and show that it is important to address both in order to successfully make use of bilingual dictionaries. By addressing both challenges we are able to improve the ability to translate new, rare words and phrases from 30% to up to 70%. The correct lemma is even generated by more than 90%.
国家哲学社会科学文献中心版权所有