首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Discourse-Aware Unsupervised Summarization for Long Scientific Documents
  • 本地全文:下载
  • 作者:Yue Dong ; Andrei Mircea ; Jackie Chi Kit Cheung
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:1089-1102
  • DOI:10.18653/v1/2021.eacl-main.93
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:We propose an unsupervised graph-based ranking model for extractive summarization of long scientific documents. Our method assumes a two-level hierarchical graph representation of the source document, and exploits asymmetrical positional cues to determine sentence importance. Results on the PubMed and arXiv datasets show that our approach outperforms strong unsupervised baselines by wide margins in automatic metrics and human evaluation. In addition, it achieves performance comparable to many state-of-the-art supervised approaches which are trained on hundreds of thousands of examples. These results suggest that patterns in the discourse structure are a strong signal for determining importance in scientific articles.
国家哲学社会科学文献中心版权所有