首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Semantic Parsing of Disfluent Speech
  • 本地全文:下载
  • 作者:Priyanka Sen ; Isabel Groves
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:1748-1753
  • DOI:10.18653/v1/2021.eacl-main.150
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Speech disfluencies are prevalent in spontaneous speech. The rising popularity of voice assistants presents a growing need to handle naturally occurring disfluencies. Semantic parsing is a key component for understanding user utterances in voice assistants, yet most semantic parsing research to date focuses on written text. In this paper, we investigate semantic parsing of disfluent speech with the ATIS dataset. We find that a state-of-the-art semantic parser does not seamlessly handle disfluencies. We experiment with adding real and synthetic disfluencies at training time and find that adding synthetic disfluencies not only improves model performance by up to 39% but can also outperform adding real disfluencies in the ATIS dataset.
国家哲学社会科学文献中心版权所有