首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Joint Learning of Representations for Web-tables, Entities and Types using Graph Convolutional Network
  • 本地全文:下载
  • 作者:Aniket Pramanick ; Indrajit Bhattacharya
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:1197-1206
  • DOI:10.18653/v1/2021.eacl-main.102
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Existing approaches for table annotation with entities and types either capture the structure of table using graphical models, or learn embeddings of table entries without accounting for the complete syntactic structure. We propose TabGCN, that uses Graph Convolutional Networks to capture the complete structure of tables, knowledge graph and the training annotations, and jointly learns embeddings for table elements as well as the entities and types. To account for knowledge incompleteness, TabGCN’s embeddings can be used to discover new entities and types. Using experiments on 5 benchmark datasets, we show that TabGCN significantly outperforms multiple state-of-the-art baselines for table annotation, while showing promising performance on downstream table-related applications.
国家哲学社会科学文献中心版权所有