首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Adapting Event Extractors to Medical Data: Bridging the Covariate Shift
  • 本地全文:下载
  • 作者:Aakanksha Naik ; Jill Fain Lehman ; Carolyn Rose
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:2963-2975
  • DOI:10.18653/v1/2021.eacl-main.258
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:We tackle the task of adapting event extractors to new domains without labeled data, by aligning the marginal distributions of source and target domains. As a testbed, we create two new event extraction datasets using English texts from two medical domains: (i) clinical notes, and (ii) doctor-patient conversations. We test the efficacy of three marginal alignment techniques: (i) adversarial domain adaptation (ADA), (ii) domain adaptive fine-tuning (DAFT), and (iii) a new instance weighting technique based on language model likelihood scores (LIW). LIW and DAFT improve over a no-transfer BERT baseline on both domains, but ADA only improves on notes. Deeper analysis of performance under different types of shifts (e.g., lexical shift, semantic shift) explains some of the variations among models. Our best-performing models reach F1 scores of 70.0 and 72.9 on notes and conversations respectively, using no labeled target data.
国家哲学社会科学文献中心版权所有