首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Gradual Fine-Tuning for Low-Resource Domain Adaptation
  • 本地全文:下载
  • 作者:Haoran Xu ; Seth Ebner ; Mahsa Yarmohammadi
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:214-221
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Fine-tuning is known to improve NLP models by adapting an initial model trained on more plentiful but less domain-salient examples to data in a target domain. Such domain adaptation is typically done using one stage of fine-tuning. We demonstrate that gradually fine-tuning in a multi-step process can yield substantial further gains and can be applied without modifying the model or learning objective.
国家哲学社会科学文献中心版权所有