首页    期刊浏览 2025年06月28日 星期六
登录注册

文章基本信息

  • 标题:GRIT: Generative Role-filler Transformers for Document-level Event Entity Extraction
  • 本地全文:下载
  • 作者:Xinya Du ; Alexander Rush ; Claire Cardie
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:634-644
  • DOI:10.18653/v1/2021.eacl-main.52
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:We revisit the classic problem of document-level role-filler entity extraction (REE) for template filling. We argue that sentence-level approaches are ill-suited to the task and introduce a generative transformer-based encoder-decoder framework (GRIT) that is designed to model context at the document level: it can make extraction decisions across sentence boundaries; is implicitly aware of noun phrase coreference structure, and has the capacity to respect cross-role dependencies in the template structure. We evaluate our approach on the MUC-4 dataset, and show that our model performs substantially better than prior work. We also show that our modeling choices contribute to model performance, e.g., by implicitly capturing linguistic knowledge such as recognizing coreferent entity mentions.
国家哲学社会科学文献中心版权所有