首页    期刊浏览 2025年06月03日 星期二
登录注册

文章基本信息

  • 标题:Deep Multi-Task Model for Sarcasm Detection and Sentiment Analysis inArabic Language
  • 本地全文:下载
  • 作者:Abdelkader El Mahdaouy ; Abdellah El Mekki ; Kabil Essefar
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:334-339
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:The prominence of figurative language devices, such as sarcasm and irony, poses serious challenges for Arabic Sentiment Analysis (SA). While previous research works tackle SA and sarcasm detection separately, this paper introduces an end-to-end deep Multi-Task Learning (MTL) model, allowing knowledge interaction between the two tasks. Our MTL model’s architecture consists of a Bidirectional Encoder Representation from Transformers (BERT) model, a multi-task attention interaction module, and two task classifiers. The overall obtained results show that our proposed model outperforms its single-task and MTL counterparts on both sarcasm and sentiment detection subtasks.
国家哲学社会科学文献中心版权所有