首页    期刊浏览 2025年08月24日 星期日
登录注册

文章基本信息

  • 标题:Preprocessing Solutions for Detection of Sarcasm and Sentiment forArabic
  • 本地全文:下载
  • 作者:Mohamed Lichouri ; Mourad Abbas ; Besma Benaziz
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:376-380
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:This paper describes our approach to detecting Sentiment and Sarcasm for Arabic in the ArSarcasm 2021 shared task. Data preprocessing is a crucial task for a successful learning, that is why we applied a set of preprocessing steps to the dataset before training two classifiers, namely Linear Support Vector Classifier (LSVC) and Bidirectional Long Short Term Memory (BiLSTM). The findings show that despite the simplicity of the proposed approach, using the LSVC model with a normalizing Arabic (NA) preprocessing and the BiLSTM architecture with an Embedding layer as input have yielded an encouraging F1score of 33.71% and 57.80% for sarcasm and sentiment detection, respectively.
国家哲学社会科学文献中心版权所有