首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Two Training Strategies for Improving Relation Extraction over Universal Graph
  • 本地全文:下载
  • 作者:Qin Dai ; Naoya Inoue ; Ryo Takahashi
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:3673-3684
  • DOI:10.18653/v1/2021.eacl-main.321
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:This paper explores how the Distantly Supervised Relation Extraction (DS-RE) can benefit from the use of a Universal Graph (UG), the combination of a Knowledge Graph (KG) and a large-scale text collection. A straightforward extension of a current state-of-the-art neural model for DS-RE with a UG may lead to degradation in performance. We first report that this degradation is associated with the difficulty in learning a UG and then propose two training strategies: (1) Path Type Adaptive Pretraining, which sequentially trains the model with different types of UG paths so as to prevent the reliance on a single type of UG path; and (2) Complexity Ranking Guided Attention mechanism, which restricts the attention span according to the complexity of a UG path so as to force the model to extract features not only from simple UG paths but also from complex ones. Experimental results on both biomedical and NYT10 datasets prove the robustness of our methods and achieve a new state-of-the-art result on the NYT10 dataset. The code and datasets used in this paper are available at https://github.com/baodaiqin/UGDSRE.
国家哲学社会科学文献中心版权所有