首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:ParaSCI: A Large Scientific Paraphrase Dataset for Longer Paraphrase Generation
  • 本地全文:下载
  • 作者:Qingxiu Dong ; Xiaojun Wan ; Yue Cao
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:424-434
  • DOI:10.18653/v1/2021.eacl-main.33
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:We propose ParaSCI, the first large-scale paraphrase dataset in the scientific field, including 33,981 paraphrase pairs from ACL (ParaSCI-ACL) and 316,063 pairs from arXiv (ParaSCI-arXiv). Digging into characteristics and common patterns of scientific papers, we construct this dataset though intra-paper and inter-paper methods, such as collecting citations to the same paper or aggregating definitions by scientific terms. To take advantage of sentences paraphrased partially, we put up PDBERT as a general paraphrase discovering method. The major advantages of paraphrases in ParaSCI lie in the prominent length and textual diversity, which is complementary to existing paraphrase datasets. ParaSCI obtains satisfactory results on human evaluation and downstream tasks, especially long paraphrase generation.
国家哲学社会科学文献中心版权所有