期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
出版年度:2021
卷号:2021
页码:105-110
语种:English
出版社:ACL Anthology
摘要:Advances in transfer learning and domain adaptation have raised hopes that once-challenging NLP tasks are ready to be put to use for sophisticated information extraction needs. In this work, we describe an effort to do just that – combining state-of-the-art neural methods for negation detection, document time relation extraction, and aspectual link prediction, with the eventual goal of extracting drug timelines from electronic health record text. We train on the THYME colon cancer corpus and test on both the THYME brain cancer corpus and an internal corpus, and show that performance of the combined systems is unacceptable despite good performance of individual systems. Although domain adaptation shows improvements on each individual system, the model selection problem is a barrier to improving overall pipeline performance.