首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Coloring the Black Box: What Synesthesia Tells Us about Character Embeddings
  • 本地全文:下载
  • 作者:Katharina Kann ; Mauro M. Monsalve-Mercado
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:2673-2685
  • DOI:10.18653/v1/2021.eacl-main.230
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:In contrast to their word- or sentence-level counterparts, character embeddings are still poorly understood. We aim at closing this gap with an in-depth study of English character embeddings. For this, we use resources from research on grapheme–color synesthesia – a neuropsychological phenomenon where letters are associated with colors –, which give us insight into which characters are similar for synesthetes and how characters are organized in color space. Comparing 10 different character embeddings, we ask: How similar are character embeddings to a synesthete’s perception of characters? And how similar are character embeddings extracted from different models? We find that LSTMs agree with humans more than transformers. Comparing across tasks, grapheme-to-phoneme conversion results in the most human-like character embeddings. Finally, ELMo embeddings differ from both humans and other models.
国家哲学社会科学文献中心版权所有