首页    期刊浏览 2024年11月13日 星期三
登录注册

文章基本信息

  • 标题:Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning inNLP
  • 本地全文:下载
  • 作者:Rob van der Goot ; Ahmet Üstün ; Alan Ramponi
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:176-197
  • DOI:10.18653/v1/2021.eacl-demos.22
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Transfer learning, particularly approaches that combine multi-task learning with pre-trained contextualized embeddings and fine-tuning, have advanced the field of Natural Language Processing tremendously in recent years. In this paper we present MaChAmp, a toolkit for easy fine-tuning of contextualized embeddings in multi-task settings. The benefits of MaChAmp are its flexible configuration options, and the support of a variety of natural language processing tasks in a uniform toolkit, from text classification and sequence labeling to dependency parsing, masked language modeling, and text generation.
国家哲学社会科学文献中心版权所有