期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
出版年度:2021
卷号:2021
页码:282-286
语种:English
出版社:ACL Anthology
摘要:In this paper, we analyze the impact of the weighted concatenation of TF-IDF features for the Arabic Dialect Identification task while we participated in the NADI2021 shared task. This study is performed for two subtasks: subtask 1.1 (country-level MSA) and subtask 1.2 (country-level DA) identification. The classifiers supporting our comparative study are Linear Support Vector Classification (LSVC), Linear Regression (LR), Perceptron, Stochastic Gradient Descent (SGD), Passive Aggressive (PA), Complement Naive Bayes (CNB), MutliLayer Perceptron (MLP), and RidgeClassifier. In the evaluation phase, our system gives F1 scores of 14.87% and 21.49%, for country-level MSA and DA identification respectively, which is very close to the average F1 scores achieved by the submitted systems and recorded for both subtasks (18.70% and 24.23%).