首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:The thin film flow of Al2O3 nanofluid particle over an unsteady stretching surface
  • 本地全文:下载
  • 作者:Ramzan Ali ; Azeem Shahzad ; Kaif us Saher
  • 期刊名称:Case Studies in Thermal Engineering
  • 印刷版ISSN:2214-157X
  • 电子版ISSN:2214-157X
  • 出版年度:2022
  • 卷号:29
  • 页码:101695
  • 语种:English
  • 出版社:Elsevier B.V.
  • 摘要:This work emphasizes the thermophysical properties of base fluid with different-shaped Al2O3 particles in the heat transfer of an unsteady thin film flow over a stretching layer. The study is performed under convective boundary conditions. A system of Partial Differential Equations (PDEs) is formed through detailed mathematical modeling. Using an appropriate set of similarity transformations, PDEs’ system is transformed into a set of nonlinear ordinary differential equations (ODE). The system of ordinary differential equations is solved in MATLAB using BVP4C. The graphical simulations analyze the impact of multi-shape Al2O3 nanoparticles and other physically significant related parameters such as Prandtl, Eckert and biot-numbers on the flow and heat transfer characteristics. In addition, the coefficient of skin friction and Nusselt number are measured and tabulated numerically for discussion. The study shows that Al2O3 nanoparticles have a high flow and heat transfer rate in a platelet form. Moreover, the temperature profile increases by growing the volume-fraction parameter and the biot-number, but the reverse pattern is found only for the slip parameter. The study is in excellent agreement with existing literature for a limited number of cases.
国家哲学社会科学文献中心版权所有