期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
出版年度:2021
卷号:2021
页码:111-120
DOI:10.18653/v1/2021.eacl-srw.16
语种:English
出版社:ACL Anthology
摘要:Neural dependency parsing has achieved remarkable performance for many domains and languages. The bottleneck of massive labelled data limits the effectiveness of these approaches for low resource languages. In this work, we focus on dependency parsing for morphological rich languages (MRLs) in a low-resource setting. Although morphological information is essential for the dependency parsing task, the morphological disambiguation and lack of powerful analyzers pose challenges to get this information for MRLs. To address these challenges, we propose simple auxiliary tasks for pretraining. We perform experiments on 10 MRLs in low-resource settings to measure the efficacy of our proposed pretraining method and observe an average absolute gain of 2 points (UAS) and 3.6 points (LAS).