首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Segmenting Subtitles for CorrectingASRSegmentation Errors
  • 本地全文:下载
  • 作者:David Wan ; Chris Kedzie ; Faisal Ladhak
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:2842-2854
  • DOI:10.18653/v1/2021.eacl-main.248
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Typical ASR systems segment the input audio into utterances using purely acoustic information, which may not resemble the sentence-like units that are expected by conventional machine translation (MT) systems for Spoken Language Translation. In this work, we propose a model for correcting the acoustic segmentation of ASR models for low-resource languages to improve performance on downstream tasks. We propose the use of subtitles as a proxy dataset for correcting ASR acoustic segmentation, creating synthetic acoustic utterances by modeling common error modes. We train a neural tagging model for correcting ASR acoustic segmentation and show that it improves downstream performance on MT and audio-document cross-language information retrieval (CLIR).
国家哲学社会科学文献中心版权所有