首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Anonymiced Shareable Data: Using mice to Create and Analyze Multiply Imputed Synthetic Datasets
  • 本地全文:下载
  • 作者:Thom Benjamin Volker ; Gerko Vink
  • 期刊名称:Psych
  • 电子版ISSN:2624-8611
  • 出版年度:2021
  • 卷号:3
  • 期号:4
  • 页码:703-716
  • DOI:10.3390/psych3040045
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Synthetic datasets simultaneously allow for the dissemination of research data while protecting the privacy and confidentiality of respondents. Generating and analyzing synthetic datasets is straightforward, yet, a synthetic data analysis pipeline is seldom adopted by applied researchers. We outline a simple procedure for generating and analyzing synthetic datasets with the multiple imputation software mice (Version 3.13.15) in R. We demonstrate through simulations that the analysis results obtained on synthetic data yield unbiased and valid inferences and lead to synthetic records that cannot be distinguished from the true data records. The ease of use when synthesizing data with mice along with the validity of inferences obtained through this procedure opens up a wealth of possibilities for data dissemination and further research on initially private data.
国家哲学社会科学文献中心版权所有