首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Response of Tropical Cyclone Frequency to Sea Surface Temperatures Using Aqua-Planet Simulations
  • 本地全文:下载
  • 作者:Pavan Harika Raavi ; Kevin J. E. Walsh
  • 期刊名称:Oceans
  • 电子版ISSN:2673-1924
  • 出版年度:2021
  • 卷号:2
  • 期号:4
  • 页码:785-810
  • DOI:10.3390/oceans2040045
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:The present study investigates the effect of increasing sea surface temperatures (SSTs) on tropical cyclone (TC) frequency using the high-resolution Australian Community Climate and Earth-System Simulator (ACCESS) model. We examine environmental conditions leading to changes in TC frequency in aqua-planet global climate model simulations with globally uniform sea surface temperatures (SSTs). Two different TC tracking schemes are used. The Commonwealth Scientific and Industrial Research Organization (CSIRO) scheme (a resolution-dependent scheme) detects TCs that resemble observed storms, while the Okubo–Weiss zeta parameter (OWZP) tracking scheme (a resolution-independent scheme) detects the locations within “marsupial pouches” that are favorable for TC formation. Both schemes indicate a decrease in the global mean TC frequency with increased saturation deficit and static stability of the atmosphere. The OWZP scheme shows a poleward shift in the genesis locations with rising temperatures, due to lower vertical wind shear. We also observe an overall decrease in the formation of tropical depressions (TDs) with increased temperatures, both for those that develop into TCs and non-developing cases. The environmental variations at the time of TD genesis between the developing and the non-developing tropical depressions identify the Okubo–Weiss (OW) parameter and omega (vertical mass flux) as significant influencing variables. Initial vortices with lower vorticity or with weaker upward mass flux do not develop into TCs due to environments with higher saturation deficit and stronger static stability of the atmosphere. The latitudinal variations in the large-scale environmental conditions account for the latitudinal differences in the TC frequency in the OWZP scheme.
国家哲学社会科学文献中心版权所有