首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Prevention of Inflammation-Mediated Neurotoxicity by Rg3 and Its Role in Microglial Activation
  • 本地全文:下载
  • 作者:Seong Soo Joo ; Yeong Min Yoo ; Byung Woo Ahn
  • 期刊名称:Biological and Pharmaceutical Bulletin
  • 印刷版ISSN:0918-6158
  • 电子版ISSN:1347-5215
  • 出版年度:2008
  • 卷号:31
  • 期号:7
  • 页码:1392-1396
  • DOI:10.1248/bpb.31.1392
  • 出版社:The Pharmaceutical Society of Japan
  • 摘要:Considering the importance of inflammation and apoptosis in neurodegenerative conditions, the potential suppressive effects of the Rg3, a by-product obtained during the steaming of red ginseng, may indicate that Rg3 could provide a beneficial therapeutic approach to treating or preventing neurodegenerative disease. We investigated the effect of Rg3 on Aβ42-mediated microglial activation and inflammation-mediated neurotoxicity in murine BV-2 microglial and Neuro-2a neuroblastoma cells, respectively. Rg3 effectively reduced inflammatory cytokine expression in Aβ42-treated BV-2, and inhibited the binding of NF-κB p65 to its DNA consensus sequences, and significantly reduced the expression of TNF-α in activated microglia. Pretreatment with Rg3 increased the survival rate of Neuro-2a exposed to TNF-α. These observations suggest that Rg3 reduced neurotoxicity by inhibiting chronic inflammation through the suppression of activated microglia. In addition, the expression of pro-inflammatory cytokines in BV-2 stimulated by Aβ42 was decreased but not eliminated by Rg3 when binding to the macrophage scavenger receptor type A (MSRA) was blocked with fucoidan. This implies that the inflammatory response may not be exclusively triggered via MSRA. More interestingly, iNOS was almost completely inhibited in the presence of Rg3 when MSRA binding was blocked with fucoidan. Moreover, Rg3 increased the expression of MSRA in BV-2 transfected with siRNA targeting MSRA mRNA, and this increased MSRA expression may play a role in the phagocytosis of Aβ42 peptides. Our results indicate that inhibition of the inflammatory repertoire of microglia, neuroprotection, and increased MSRA expression induced by Rg3 may at least partly explain its therapeutic effects in chronic neurodegenerative diseases.
  • 关键词:microglia;Rg3;beta amyloid;chronic inflammation;macrophage scavenger receptor type A
国家哲学社会科学文献中心版权所有