首页    期刊浏览 2025年05月24日 星期六
登录注册

文章基本信息

  • 标题:Deep Graph Convolutional Networks for Accurate Automatic Road Network Selection
  • 本地全文:下载
  • 作者:Jing Zheng ; Ziren Gao ; Jingsong Ma
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2021
  • 卷号:10
  • 期号:11
  • 页码:768
  • DOI:10.3390/ijgi10110768
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:The selection of road networks is very important for cartographic generalization. Traditional artificial intelligence methods have improved selection efficiency but cannot fully extract the spatial features of road networks. However, current selection methods, which are based on the theory of graphs or strokes, have low automaticity and are highly subjective. Graph convolutional networks (GCNs) combine graph theory with neural networks; thus, they can not only extract spatial information but also realize automatic selection. Therefore, in this study, we adopted GCNs for automatic road network selection and transformed the process into one of node classification. In addition, to solve the problem of gradient vanishing in GCNs, we compared and analyzed the results of various GCNs (GraphSAGE and graph attention networks [GAT]) by selecting small-scale road networks under different deep architectures (JK-Nets, ResNet, and DenseNet). Our results indicate that GAT provides better selection of road networks than other models. Additionally, the three abovementioned deep architectures can effectively improve the selection effect of models; JK-Nets demonstrated more improvement with higher accuracy (88.12%) than other methods. Thus, our study shows that GCN is an appropriate tool for road network selection; its application in cartography must be further explored.
国家哲学社会科学文献中心版权所有