首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Efficient IoT Data Management for Geological Disasters Based on Big Data-Turbocharged Data Lake Architecture
  • 本地全文:下载
  • 作者:Xiaohui Huang ; Junqing Fan ; Ze Deng
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2021
  • 卷号:10
  • 期号:11
  • 页码:743
  • DOI:10.3390/ijgi10110743
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Multi-source Internet of Things (IoT) data, archived in institutions’ repositories, are becoming more and more widely open-sourced to make them publicly accessed by scientists, developers, and decision makers via web services to promote researches on geohazards prevention. In this paper, we design and implement a big data-turbocharged system for effective IoT data management following the data lake architecture. We first propose a multi-threading parallel data ingestion method to ingest IoT data from institutions’ data repositories in parallel. Next, we design storage strategies for both ingested IoT data and processed IoT data to store them in a scalable, reliable storage environment. We also build a distributed cache layer to enable fast access to IoT data. Then, we provide users with a unified, SQL-based interactive environment to enable IoT data exploration by leveraging the processing ability of Apache Spark. In addition, we design a standard-based metadata model to describe ingested IoT data and thus support IoT dataset discovery. Finally, we implement a prototype system and conduct experiments on real IoT data repositories to evaluate the efficiency of the proposed system.
国家哲学社会科学文献中心版权所有