摘要:Using the par to rep region of the 24653 bp plasmid pN315, which is present in Staphylococcus aureus strain N315, we constructed three vectors that can be shuttled between Escherichia coli and S. aureus and maintained stably in S. aureus . Due to plasmid incompatibility, the resident plasmid in S. aureus cells can be replaced via transformation with an entering plasmid, which carries a different drug resistance gene. To evaluate the applicability of this plasmid-based approach for identifying genes essential for S. aureus cell growth, the chromosomal mraY gene, which is involved in peptidoglycan biosynthesis, was deleted in cells harboring a resident plasmid with an intact mraY gene. The resultant disruptant was then transformed with an empty vector. Cells with a chromosomal mraY deletion but lacking the plasmid supplying mraY could not be recovered, suggesting that mraY is indispensable for staphylococcal cell growth or viability. In contrast, other two genes were shown to be dispensable by this system. Thus, the pN315-based plasmids appear to be useful for studying genes essential for S. aureus cell growth.