首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Diphenyleneiodonium Chloride, an Inhibitor of Reduced Nicotinamide Adenine Dinucleotide Phosphate Oxidase, Suppresses Light-Dependent Induction of Clock and DNA Repair Genes in Zebrafish
  • 本地全文:下载
  • 作者:Tomomi Osaki ; Yoshimi Uchida ; Jun Hirayama
  • 期刊名称:Biological and Pharmaceutical Bulletin
  • 印刷版ISSN:0918-6158
  • 电子版ISSN:1347-5215
  • 出版年度:2011
  • 卷号:34
  • 期号:8
  • 页码:1343-1347
  • DOI:10.1248/bpb.34.1343
  • 出版社:The Pharmaceutical Society of Japan
  • 摘要:In most species, solar light is both a DNA-damaging agent and the key entraining stimulus for the endogenous circadian clock. The zebrafish is an attractive vertebrate system in which to study the influence of light on gene expression because the DNA repair proteins and circadian oscillators in this species are light-responsive. At the molecular level, light treatment of zebrafish cells induces the production of reactive oxygen species (ROS). ROS both alters the reduction–oxidation (redox) state of these cells and stimulates intracellular extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) cascades that transduce photic signals activating the transcription of particular light-responsive genes, including some clock genes and some DNA repair genes involved in photoreactivation. To date, however, the phototransducing molecules responsible for light-dependent ROS production have not been identified. Flavin-containing oxidases, such as reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, are versatile flavoenzymes that catalyze molecular oxidation in numerous metabolic pathways. Importantly, light induces the photoreduction of the flavin adenine dinucleotide (FAD) moiety in these oxidases, leading to ROS production. Here, we show in cultured zebrafish cells that diphenyleneiodonium chloride (DPI), an inhibitor of NADPH oxidase, both suppresses ERK/MAPK activation and efficiently reduces light-dependent expression of clock and photoreactivation genes. Our results suggest that flavin-containing oxidases may be responsible for light-dependent ROS production and thus light-dependent gene expression in zebrafish. Our findings also support the existence of a regulatory link between photoreactivation and the circadian clock in this species.
  • 关键词:circadian clock;flavin-containing oxidase;reduction–oxidation;reactive oxygen species;zebrafish
国家哲学社会科学文献中心版权所有