首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:In Vitro Study on the Transport of Zinc across Intestinal Epithelial Cells Using Caco-2 Monolayers and Isolated Rat Intestinal Membranes
  • 本地全文:下载
  • 作者:Tohru Yasuno ; Hiroki Okamoto ; Miho Nagai
  • 期刊名称:Biological and Pharmaceutical Bulletin
  • 印刷版ISSN:0918-6158
  • 电子版ISSN:1347-5215
  • 出版年度:2012
  • 卷号:35
  • 期号:4
  • 页码:588-593
  • DOI:10.1248/bpb.35.588
  • 出版社:The Pharmaceutical Society of Japan
  • 摘要:The variety of physiologic and biologic functions of zinc is fascinating and could be applicable to medicine. Our previous studies demonstrated that the absorption of zinc after oral administration to rats is dose-dependent. In order to clarify the detailed mechanism of the dose-dependent in vivo absorption, the transport of zinc across intestinal epithelial cells was investigated using Caco-2 monolayers and isolated rat intestinal membranes. The permeation of zinc across Caco-2 monolayers is concentration-dependent, and both saturable and nonsaturable components are involved. The Michaelis constant and maximum transport rate for saturable transport are 11.7 μ M and 31.8 pmol min−1 cm−2, respectively; the permeability coefficient for nonsaturable trasnport is 2.37×10−6 cm s−1. These parameters for permeation across membranes isolated from duodenum, ileum, and jejunum of rats are similar with those of Caco-2 cells. The comparison of the parameters for permeation across isolated intestinal membrane suggests that the major site of intestinal zinc absorption in rats is the duodenum. The maximum rate of zinc transport across the isolated intestinal membrane ( V max) shows no correlation with mRNA expression of ZIP4, ZIP5 or ZnT1 in rats, but shows an inverse correlation with that of metallothioneins (MTs). This finding may be partly explained by the buffering role of metallothionein in intestinal absorption. The saturable transport of zinc is not simply determined only by the influx transporter, ZIP4, since three influx and efflux transporters are involved in the transport of zinc.
  • 关键词:zinc transporter;intestinal absorption;in vitro diffusion chamber system;metallothionein;Caco-2
国家哲学社会科学文献中心版权所有