Red ginseng (the steamed root of Panax ginseng C.A. MEYER , Araliaceae), which contains ginsenosides as its main constituents, is frequently used to treat tumor, inflammation, diabetes, stress and acquired immunodeficiency syndrome in Asian countries. Of these ginsenosides, only protopanaxadiol compound K has been reported to abolish the cytoprotective phenotype of human immunodeficiency virus type 1 (HIV-1)-transfected human macrophages. Here, we investigated the anti-cytoprotective effect of protopanaxatriol ginsenoside Rh1 on Tat-expressing cytoprotective CHME5 cells and D3-infected human primary macrophages. Treatment with ginsenoside Rh1 in the presence of lipopolysaccharide/cycloheximide (LPS/CHX) potently abolished the cytoprotective phenotype of Tat-transduced CHME5 cells as well as D3-infected human primary macrophages. Ginsenoside Rh1 significantly inhibited LPS/CHX-induced Akt phosphorylation, as well as mammalian target of rapamycin and Bcl-2-associated death promoter activation in both cell types. Furthermore, ginsenoside Rh1 inhibited pyruvate dehydrogenase lipoamide kinase isozyme 1 (PDK-1) phosphorylation. However, ginsenoside Rh1 did not inhibit phosphoinositide 3-kinase phosphorylation. Ginsenosides Rh1 in the presence of miltefosine (5 µ M ) additively increased the anti-cytoprotective activity against HIV-1 Tat-expressing macrophages. On the basis of these findings, we propose that ginsenoside Rh1 could possibly eliminate HIV-1 infected macrophages by inhibiting the PDK1/Akt pathway.