Midkine (MK) and pleiotrophin (PTN) belong to the subfamily of heparin binding growth factors. They have ca. 50% structural homology, with similar C- and N-domains as well as comparable binding affinity to heparin, glycoproteins and proteoglycans. Both MK and PTN have diverse functions, such as mitogenicity, inflammation, angiogenesis, oncogenesis and stem cell self-renewal. The high expression of MK and PTN in many kinds of cancers makes them excellent as cancer biomarkers and targets for anticancer drug development. In addition, the important roles of MK and PTN in the regeneration of tissues, such as myocardium, cartilage, neuron, muscle, and bone, make them attractive candidates for the treatment of degenerative diseases such as myocardiac and cerebral infarction, Alzheimer’s disease, Parkinson’s disease and skeletal muscle injury. As a result, there has been a growing interest in the mechanisms of MK and PTN function, including the diverse receptors on the cell membrane and complex signal pathways in the cytoplasm. This work reviews the structures of MK and PTN, as well as the receptors and the intracellular signal pathways involving MK and PTN which will pave the way for future development of MK and PTN therapeutics.