首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Molecular Cloning and Characterization of Genes Involved in Rosmarinic Acid Biosynthesis from Prunella vulgaris
  • 本地全文:下载
  • 作者:Yeon Bok Kim ; YouJin Shin ; Pham Anh Tuan
  • 期刊名称:Biological and Pharmaceutical Bulletin
  • 印刷版ISSN:0918-6158
  • 电子版ISSN:1347-5215
  • 出版年度:2014
  • 卷号:37
  • 期号:7
  • 页码:1221-1227
  • DOI:10.1248/bpb.b14-00139
  • 出版社:The Pharmaceutical Society of Japan
  • 摘要:Prunella vulgaris L., commonly known as “self-heal” or “heal-all,” is a perennial herb with a long history of medicinal use. Phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate:coenzyme-A (CoA) ligase (4CL) are important enzymes in the phenylpropanoid pathway and in the accumulation of rosmarinic acid (RA), which is a major secondary metabolite in P. vulgaris. In this study, we isolated cDNAs encoding PvPAL, PvC4H, and Pv4CL from P. vulgaris using rapid amplification of cDNA ends polymerase chain reaction (PCR). The amino acid sequence alignments of PvPAL, PvC4H, and Pv4CL showed high sequence identity to those of other plants. Quantitative real-time PCR analysis was used to determine the transcript levels of genes involved in RA biosynthesis in the flowers, leaves, stems, and roots of P. vulgaris. The transcript levels of PvPAL, PvC4H, and Pv4CL1 were the highest in flowers, whereas Pv4CL2 was the highest in roots. High-performance liquid chromatography analysis also showed the highest RA content in the flowers (3.71 mg/g dry weight). We suggest that the expression of the PvPAL, PvC4H, and Pv4CL1 genes is correlated with the accumulation of RA. Our results revealed that P. vulgaris flowers are appropriate for medicinal usage, and our findings provide support for increasing RA production in this plant.
国家哲学社会科学文献中心版权所有