摘要:Previous research repeatedly found basic numerical abilities (e.g., magnitude understanding, arithmetic fact knowledge, etc.) to predict young students' current and later arithmetic achievement as assessed by achievement tests – even when controlling for the influence of domain-general abilities (e.g., intelligence, working memory). However, to the best of our knowledge, previous studies hardly addressed this issue in secondary school students. Additionally, they primarily assessed basic numerical abilities in a between-task approach (i.e., using different tasks for different abilities). Finally, their relevance for real-life academic outcomes such as mathematics grades has only rarely been investigated. The present study therefore pursued an approach using one and the same task (i.e., a within-task approach) to reduce confounding effects driven by between-task differences. In particular, we evaluated the relevance of i) number magnitude understanding, ii) arithmetic fact knowledge, and iii) conceptual and procedural knowledge for the mathematics grades of 81 students aged between ten and thirteen (i.e., in Grades 5 and 6) employing the number bisection task. Results indicated that number magnitude understanding, arithmetic fact knowledge, and conceptual and procedural knowledge contributed to explaining mathematics grades even when controlling for domain-general cognitive abilities. Methodological and practical implications of the results are discussed.