首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:A Low Computational Cost Method for Mobile Malware Detection Using Transfer Learning and Familial Classification Using Topic Modelling
  • 本地全文:下载
  • 作者:Saket Acharya ; Umashankar Rawat ; Roheet Bhatnagar
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4119500
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:With the extensive use of Android applications, malware growth has been increasing drastically. The high popularity of Android devices has motivated malware developers to attack these devices. In recent times, most researchers and scholars have used deep learning approaches to detect Android malware. Although deep learning techniques provide good accuracy and efficiency, they require high computational cost to train huge and complex data sets. Hence, there is a need for an approach that can efficiently detect novel malware variants with a minimum computational cost. This paper proposes a novel framework for detecting and clustering Android malware using the transfer learning and the topic modelling approach. The transfer learning approach minimizes new training data by transferring well-known features from a qualified source model to a destination model, and hence, a high amount of computational power is not required. In addition, the proposed framework clusters the detected malware variants into their corresponding families with the help of Latent Dirichlet Allocation and hierarchical clustering techniques. For performance assessment, we performed several experiments with more than 50K Android application samples. In addition, we compared the performance of our framework with that of similar existing traditional machine learning and deep learning models. The proposed framework provides better accuracy of 98.3% during the classification stage by using the transfer learning approach as compared to other state-of-the-art Android malware detection techniques. The high precision value of 98.7% is obtained during the clustering stage while grouping the obtained malicious applications into their corresponding malware families.
国家哲学社会科学文献中心版权所有