首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Spatial-Temporal Analysis of Crash Severity: Multisource Data Fusion Approach
  • 本地全文:下载
  • 作者:Amirhossein Taheri ; Arash Rasaizadi ; Seyedehsan Seyedabrishami
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/2828277
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:High severity crashes are one of the negative consequences of suburban transportation for a range of factors. Fatalities, injuries, and medical costs, as well as road and car damage and mental side effects, are more important consequences of severe crashes. The goal of this research is to figure out what factors contribute to different crash severity levels, in order to reduce the likelihood of such crashes. This study is unique in that it tries to investigate the capabilities of various discrete choice methods in order to explore which one performs best given the current database and research restrictions. Furthermore, the data fusion approach allows this study to take advantage of a wide range of characteristics that influence crash severity. To achieve this objective, the current study used several types of discrete choice models, such as ordered logit (OL), multinominal logit (MNL), and mixed logit (ML) models, to examine the factors influencing the severity of crashes in the suburban highway area. The data are related to crashes and traffic counters in Khorasan Razavi province in the northeast of Iran. Spatial-temporal analysis of crash data with a data fusion approach has been conducted to prepare a multisource data set with a wide spectrum of independent variables to acquire reliable results using logit models. Independent descriptive variables include geometric design, time-related, weather and environmental conditions, land use, traffic attributes, vehicle characteristics, and driver characteristics. ML provided the best fit with the available data set when compared to other discrete choice techniques. In addition, in all three logit models, coefficients of geometric design, vehicle characteristics, driver characteristics, land use, and weather and environmental conditions are significant, demonstrating the significance of using multisource data in defining factors impacting crash severity.
国家哲学社会科学文献中心版权所有