首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Heat Dissipation Enhancement Structure Design of Two-Stage Electric Air Compressor for Fuel Cell Vehicles Considering Efficiency Improvement
  • 本地全文:下载
  • 作者:Jiaming Zhou ; Jie Liu ; Qingqing Su
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:12
  • 页码:7259
  • DOI:10.3390/su14127259
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:As an auxiliary component with the largest energy consumption in the fuel cell power system, the electric air compressor is of great significance to improve the overall efficiency of the system by reducing its power consumption under the premise of meeting the cathode intake demand. In this paper, the flow state of the gas in the flow field of the fuel cell TSEAC (two-stage electric air compressor) is analyzed by simulation, and the accuracy of the simulation results is verified by experiments. Through the research on the gas compression work of the fuel cell TSEAC, it is found that the higher temperature rise of the gas during the compression process will increase the compression work, thereby reducing the efficiency of the fuel cell TSEAC. Therefore, based on the field synergy theory, this paper designs the heat dissipation structure of the TSEAC elbow. In the common working conditions of fuel cell TSEAC, micro-fin tube is an effective energy-saving structure that takes into account heat dissipation enhancement and flow resistance, and its ratio of micro-fin height to laminar bottom layer thickness ε/δ = 1.6 has the best energy-saving effect. Finally, the energy-saving effect of the micro-fin tube is verified by simulation. The load torque of the optimized fuel cell TSEAC is reduced from 1.540 N·m to 1.509 N·m, and the shaft power is reduced from 14.51 kW to 14.22 kW. Its efficiency increased by 1.9%.
国家哲学社会科学文献中心版权所有