首页    期刊浏览 2025年08月28日 星期四
登录注册

文章基本信息

  • 标题:Interpretable Machine-Learning Approach in Estimating FDI Inflow: Visualization of ML Models with LIME and H2O
  • 本地全文:下载
  • 作者:Singh Devesh
  • 期刊名称:TalTech Journal of European Studies
  • 印刷版ISSN:2674-4600
  • 电子版ISSN:2674-4619
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:133-152
  • DOI:10.2478/bjes-2021-0009
  • 语种:English
  • 出版社:Sciendo
  • 摘要:In advancement of interpretable machine learning (IML), this research proposes local interpretable model-agnostic explanations (LIME) as a new visualization technique in a novel informative way to analyze the foreign direct investment (FDI) inflow. This article examines the determinants of FDI inflow through IML with a supervised learning method to analyze the foreign investment determinants in Hungary by using an open-source artificial intelligence H2O platform. This author used three ML algorithms—general linear model (GML), gradient boosting machine (GBM), and random forest (RF) classifier—to analyze the FDI inflow from 2001 to 2018. The result of this study shows that in all three classifiers GBM performs better to analyze FDI inflow determinants. The variable value of production in a region is the most influenced determinant to the inflow of FDI in Hungarian regions. Explanatory visualizations are presented from the analyzed dataset, which leads to their use in decision-making.
国家哲学社会科学文献中心版权所有