首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Probing Classifiers: Promises, Shortcomings, and Advances
  • 本地全文:下载
  • 作者:Yonatan Belinkov
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2022
  • 卷号:48
  • 期号:1
  • 页码:207-219
  • DOI:10.1162/coli_a_00422
  • 语种:English
  • 出版社:MIT Press
  • 摘要:AbstractProbing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing. The basic idea is simple—a classifier is trained to predict some linguistic property from a model’s representations—and has been used to examine a wide variety of models and properties. However, recent studies have demonstrated various methodological limitations of this approach. This squib critically reviews the probing classifiers framework, highlighting their promises, shortcomings, and advances.
国家哲学社会科学文献中心版权所有