首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Universal Discourse Representation Structure Parsing
  • 本地全文:下载
  • 作者:Jiangming Liu ; Shay B. Cohen ; Mirella Lapata
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2021
  • 卷号:47
  • 期号:2
  • 页码:445-476
  • DOI:10.1162/coli_a_00406
  • 语种:English
  • 出版社:MIT Press
  • 摘要:AbstractWe consider the task of crosslingual semantic parsing in the style of Discourse Representation Theory (DRT) where knowledge from annotated corpora in a resource-rich language is transferred via bitext to guide learning in other languages. We introduce ??niversal Discourse Representation Theory (??DRT), a variant of DRT that explicitly anchors semantic representations to tokens in the linguistic input. We develop a semantic parsing framework based on the Transformer architecture and utilize it to obtain semantic resources in multiple languages following two learning schemes. The many-to-one approach translates non-English text to English, and then runs a relatively accurate English parser on the translated text, while the one-to-many approach translates gold standard English to non-English text and trains multiple parsers (one per language) on the translations. Experimental results on the Parallel Meaning Bank show that our proposal outperforms strong baselines by a wide margin and can be used to construct (silver-standard) meaning banks for 99 languages.
国家哲学社会科学文献中心版权所有