首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Context-Aware Matrix Factorization for the Identification of Urban Functional Regions with POI and Taxi OD Data
  • 本地全文:下载
  • 作者:Changfeng Jing ; Yanru Hu ; Hongyang Zhang
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2022
  • 卷号:11
  • 期号:6
  • 页码:351
  • DOI:10.3390/ijgi11060351
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:The identification of urban functional regions (UFRs) is important for urban planning and sustainable development. Because this involves a set of interrelated processes, it is difficult to identify UFRs using only single data sources. Data fusion methods have the potential to improve the identification accuracy. However, the use of existing fusion methods remains challenging when mining shared semantic information among multiple data sources. In order to address this issue, we propose a context-coupling matrix factorization (CCMF) method which considers contextual relationships. This method was designed based on the fact that the contextual relationships embedded in all of the data are shared and complementary to one another. An empirical study was carried out by fusing point-of-interest (POI) data and taxi origin–destination (OD) data in Beijing, China. There are three steps in CCMF. First, contextual information is extracted from POI and taxi OD trajectory data. Second, fusion is performed using contextual information. Finally, spectral clustering is used to identify the functional regions. The results show that the proposed method achieved an overall accuracy (OA) of 90% and a kappa of 0.88 in the study area. The results were compared with the results obtained using single sources of non-fused data and other fusion methods in order to validate the effectiveness of our method. The results demonstrate that an improvement in the OA of about 5% in comparison to a similar method in the literature could be achieved using this method.
国家哲学社会科学文献中心版权所有