首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Sparse Transcription
  • 本地全文:下载
  • 作者:Steven Bird
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2021
  • 卷号:46
  • 期号:4
  • 页码:713-744
  • DOI:10.1162/coli_a_00387
  • 语种:English
  • 出版社:MIT Press
  • 摘要:AbstractThe transcription bottleneck is often cited as a major obstacle for efforts to document the world’s endangered languages and supply them with language technologies. One solution is to extend methods from automatic speech recognition and machine translation, and recruit linguists to provide narrow phonetic transcriptions and sentence-aligned translations. However, I believe that these approaches are not a good fit with the available data and skills, or with long-established practices that are essentially word-based. In seeking a more effective approach, I consider a century of transcription practice and a wide range of computational approaches, before proposing a computational model based on spoken term detection that I call “sparse transcription.” This represents a shift away from current assumptions that we transcribe phones, transcribe fully, and transcribe first. Instead, sparse transcription combines the older practice of word-level transcription with interpretive, iterative, and interactive processes that are amenable to wider participation and that open the way to new methods for processing oral languages.
国家哲学社会科学文献中心版权所有