首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Support Vector Machine-Based Fault Diagnosis of Power Transformer Using k Nearest-Neighbor Imputed DGA Dataset
  • 本地全文:下载
  • 作者:Zahriah Binti Sahri ; Rubiyah Binti Yusof
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2014
  • 卷号:02
  • 期号:09
  • 页码:22-31
  • DOI:10.4236/jcc.2014.29004
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Missing values are prevalent in real-world datasets and they may reduce predictive performance of a learning algorithm. Dissolved Gas Analysis (DGA), one of the most deployable methods for detecting and predicting incipient faults in power transformers is one of the casualties. Thus, this paper proposes filling-in the missing values found in a DGA dataset using the k-nearest neighbor imputation method with two different distance metrics: Euclidean and Cityblock. Thereafter, using these imputed datasets as inputs, this study applies Support Vector Machine (SVM) to built models which are used to classify transformer faults. Experimental results are provided to show the effectiveness of the proposed approach.
  • 关键词:Missing Values; Dissolved Gas Analysis; Support Vector Machine; k-Nearest Neighbors
国家哲学社会科学文献中心版权所有