首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Information Theory and Data-Mining Techniques for Network Traffic Profiling for Intrusion Detection
  • 本地全文:下载
  • 作者:Pablo Velarde-Alvarado 1* , Rafael Martinez-Pelaez 1 , Joel Ruiz-Ibarra 1 , Victor Morales-Rocha
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2014
  • 卷号:02
  • 期号:11
  • 页码:24-30
  • DOI:10.4236/jcc.2014.211003
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper, information theory and data mining techniques to extract knowledge of network traffic behavior for packet-level and flow-level are proposed, which can be applied for traffic profiling in intrusion detection systems. The empirical analysis of our profiles through the rate of remaining features at the packet-level, as well as the three-dimensional spaces of entropy at the flow-level, provide a fast detection of intrusions caused by port scanning and worm attacks.
  • 关键词:Intrusion Detection; Traffic Profiling; Entropy; and Network Worms
国家哲学社会科学文献中心版权所有