首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Super-resolution reconstruction of seismic section image via multi-scale convolution neural network
  • 本地全文:下载
  • 作者:Meng-Di Deng ; Rui-Sheng Jia ; Hong-Mei Sun
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:303
  • 页码:1-13
  • DOI:10.1051/e3sconf/202130301058
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs a multi-scale convolutional neural network to learn high-low resolution image feature pairs, and realizes mapping learning from low-resolution seismic section images to high-resolution seismic section images. This multi-scale convolutional neural network model consists of four convolutional layers and a sub-pixel convolutional layer. Convolution operations are used to learn abundant seismic section image features, and sub-pixel convolution layer is used to reconstruct high-resolution seismic section image. The experimental results show that the proposed method is superior to the comparison method in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the total training time and reconstruction time, our method is about 22% less than the FSRCNN method and about 18% less than the ESPCN method.
国家哲学社会科学文献中心版权所有