首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Study On Deep Learning And Machine Learning Techniques On Detection Of Parkinson’s Disease
  • 本地全文:下载
  • 作者:P. Mounika ; S. Govinda Rao
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:309
  • 页码:1-8
  • DOI:10.1051/e3sconf/202130901008
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Parkinson’s disease (PD) is a sophisticated anxiety malady that impairs movement. Symptoms emerge gradually, initiating with a slight tremor in only one hand occasionally. Tremors are prevalent, although the condition is sometimes associated with stiffness or slowed mobility. In the early degrees of PD, your face can also additionally display very little expression. Your fingers won’t swing while you walk. Your speech can also additionally grow to be gentle or slurred. PD signs and symptoms get worse as your circumstance progresses over time. The goal of this study is to test the efficiency of deep learning and machine learning approaches in order to identify the most accurate strategy for sensing Parkinson’s disease at an early stage. In order to measure the average performance most accurately, we compared deep learning and machine learning methods.
国家哲学社会科学文献中心版权所有