摘要:Planar MFC prototypes were constructed and experimented to operate as sensors of the anoxic condition in a denitrification tank of a wastewater treatment plant in Italy, during different times in 2018 – 2019. Electrodes were differently enriched with carbon paint containing nanotubes and CeO2 nanoparticles. Performances of different electrodes were compared. Results underline critical anoxic conditions in the tank, that caused a very low signal and phenomena of signal reversion during some period of the year. the activity of aerobic microorganisms and protozoa growing and grazing the bacteria on the electrodes strongly influenced the signal of the MFCs. The presence of nanoceria enhanced, for some extent, the MFC signal, both in presence of reversing trends and in absence of these phenomena. In absence of reversing trends, nanoceria enhanced the MFC voltage. Such signal trends from MFCs can give, in real-time, useful information to optimize the purification process without the necessity of frequent biological and chemical analyses.