摘要:The excellent properties of graphene phase change nanocomposite made it have potential application value in the field of heat storage materials, which was expected to achieve the integration of heat transfer and storage. In order to enhance the thermal performance of paraffin in energy storage, the structure models of n-octadecane and three kinds of graphene/n-octadecane composites were established. Molecular dynamics method was used to study the variation of thermophysical properties. It is found that the strong interaction between graphene and noctadecane restricts the diffusion intensity of n-octadecane molecules, which reflects in the decreasing trend of the self-diffusion coefficient. In addition, the thermal conductivity of each system in the solid state is higher than that of liquid, and abruptly drops near the melting point. The thermal conductivity of the composite PCM always higher than the pure noctadecane and increases with the amount of graphene.