首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Influence Factors on Removal of 2, 4-DCP by Sulfided Nanoscale Zerovalent Iron
  • 本地全文:下载
  • 作者:Yajun Li ; Yongxiang Zhang ; Jinhao Wang
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2022
  • 卷号:350
  • 页码:1-4
  • DOI:10.1051/e3sconf/202235001012
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:2, 4-Dichlorophenol (2, 4-DCP) has been extensively applied for chemical and pharmaceutical production, resulting in severe environmental pollution. In this paper, the sulfided nanometer zero-valent iron (S-nZVI) was synthesized and applied to remove 2, 4-DCP. The experimental tests displayed that when the sulfur iron mole ratio was 0.129, the elimination rate for 2.4-DCP was 91.9%, and the removal rate declined when the sulfur-to-iron proportion increased. As the initial concentration of 2, 4-DCP improved from 10 to 40mgL-1, the elimination rate of 2, 4-DCP declined from 92.6% to 65.3%. The elimination effect of S-nZVI on 2, 4-DCP increased with rising temperature. The removal rate of 2, 4-DCP varied under various pH conditions. The removal efficiencies were reduced from 75.5% to 48.8% when the initial pH ranged from 5 to 3. When pH is 11, the removal rate is 97.9%. Kinetics of degradation reaction of 2, 4-DCP under different conditions were conducted. The process for removing 2, 4-DCP was in accord with the pseudo-first-order kinetics model. The initial pH and sulfur mole ratio played a decisive role, which determined the removing rate of 2, 4-DCP. The findings can guide more efficient S-nZVI reactivity towards the target contaminants in water remediation.
国家哲学社会科学文献中心版权所有