首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Bayesian and maximum likelihood inference approaches for the discrete generalized Sibuya distribution with censored data
  • 本地全文:下载
  • 作者:Bruno Caparroz Lopes de Freitas ; Marcos Vinicius de Oliveira Peres ; Jorge Alberto Achcar
  • 期刊名称:AEDOS
  • 印刷版ISSN:1984-5634
  • 出版年度:2022
  • 卷号:15
  • 期号:1
  • 页码:50-74
  • DOI:10.1285/i20705948v15n1p50
  • 语种:English
  • 出版社:AEDOS
  • 摘要:This paper presents inferences under classical (maximum likelihood, ML) and Bayesian approaches for the parameters of the generalized Sibuya (GS) probability distribution considering complete and right censored lifetime data. Under a Bayesian approach, the joint posterior probability distributions of interest are estimated using Markov Chain Monte Carlo (MCMC) simulation methods. A comprehensive simulation study is carried out to assess the performance of the estimation procedure. The usefulness of the GS model is also assessed with applications to two real data sets. Despite its merits, one limitation of the generalized Sibuya distribution is that it does not present great flexibility of fit of the hazard function as compared to other existing lifetime models.
  • 关键词:Survival analysis;censored data;Sibuya distribution;censored data;maximum likelihood estimation;Bayesian inference
国家哲学社会科学文献中心版权所有