首页    期刊浏览 2026年01月03日 星期六
登录注册

文章基本信息

  • 标题:Why does Indirect Inference estimation produce less small sample bias than maximum likelihood? A note
  • 本地全文:下载
  • 作者:Meenagh, David ; Minford, Patrick ; Xu, Yongdeng
  • 期刊名称:Cardiff Economics Working Papers / Cardiff University, Cardiff Business School
  • 印刷版ISSN:1749-6101
  • 出版年度:2022
  • 期号:10
  • 语种:English
  • 出版社:Cardiff University
  • 摘要:Maximum Likelihood (ML) shows both lower power and higher bias in small sample Monte Carlo experiments than Indirect Inference (II) and IIís higher power comes from its use of the model-restricted distribution of the auxiliary model coefficients (Le et al. 2016). We show here that IIís higher power causes it to have lower bias, because false parameter values are rejected more frequently under II; this greater rejection frequency is partly offset by a lower tendency for ML to choose unrejected false parameters as estimates, due again to its lower power allowing greater competition from rival unrejected parameter sets.
  • 关键词:Bias;Indirect Inference;Maximum Likelihood
国家哲学社会科学文献中心版权所有