首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Optimization techniques on fuzzy inference systems to detect Xanthomonas campestris disease
  • 本地全文:下载
  • 作者:Julio Bar贸n Velandia ; Camilo Enrique Rocha Calder贸n ; Daniel David Leal Lara
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2021
  • 卷号:11
  • 期号:4
  • 页码:3510-3518
  • DOI:10.11591/ijece.v11i4.pp3510-3518
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:This paper shows the outcomes for four optimization models based on fuzzy inference systems, intervened using Quasi-Newton and genetic algorithms, to early assess bean plants’ leaves for Xanthomonas campestris disease. The assessment on the status of the plant (sane or ill) is defined through the intensity of the color in the RGB scale for the data-sets and images to analyze the implementation of the models. The best model performance is 99.68% when compared with the training data and a 94% effectiveness rate on the detection of Xanthomonas campestris in a bean leave image. Therefore, these results would allow farmers to take early measures to reduce the impact of the disease on the look and performance of green bean crops.
  • 关键词:agriculture;disease identification;fuzzy logic systems;optimization algorithms;xanthomonas campestris
国家哲学社会科学文献中心版权所有