期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2021
卷号:11
期号:4
页码:2798-2810
DOI:10.11591/ijece.v11i4.pp2798-2810
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:The on-board energy storage system plays a key role in electric vehicles since it directly affects their performance and autonomy. The lithium-ion battery offers satisfactory characteristics that make electric vehicles competitive with conventional ones. This article focuses on modeling and estimating the parameters of the lithium-ion battery cell when used in different electric vehicle drive cycles and styles. The model consists of an equivalent electrical circuit based on a second-order Thevenin model. To identify the parameters of the model, two algorithms were tested: Trust-Region-Reflective and Levenberg-Marquardt. To account for the dynamic behavior of the battery cell in an electric vehicle, this identification is based on measurement data that represents the actual use of the battery in different conditions and driving styles. Finally, the model is validated by comparing simulation results to measurements using the mean square error (MSE) as model performance criteria for the driving cycles (UDDS, LA-92, US06, neural network (NN), and HWFET). The results demonstrate interesting performance mostly for the driving cycles (UDDS and LA-92). This confirms that the model developed is the best solution to be integrated in a battery management system of an electric vehicle.